Nous incluons ci-desous l'hommage de Abbès Bahri à Salah Baouendi. Notre tristesse est très grande d'avoir perdu les deux.
Hommage à la mémoire de M.S. Baouendi
Il y a un peu plus de deux ans disparaissait le mathématicien Mohamed Salah Baouendi, spécialiste des équations aux dérivées partielles, de la théorie des distributions et de la géométrie CR (analyse complexe).
M.S. Baouendi était un élève de Laurent Schwartz, un collaborateur de François Trèves et de Linda Rotschild-Preiss (son épouse). Il était connu pour ses recherches et ses théorèmes remarquables et sa disparition a été une perte pour la communauté mathématique internationale. Il et difficile de former des maîtres consommés : ils sont rares. Quand ils disparaissent, c'est un morceau de connaissance, une maîtrise et un art qui se perdent ainsi.
On ne remplace pas les maîtres – M.S. Baouendi en était un – on peut seulement espérer que d'autres leur succèderont et continueront le travail nécessaire au progrès de la connaissance.
M.S. Baouendi a aussi eu un rôle important dans la communauté mathématique américaine puisqu'il a été « chairman » à l'université de Purdue et qu'il a été aussi président de l'AMS (American Mathematical Society). En cette qualité, il a aidé la mission scientifique tunisienne aux Etats-Unis à inscrire dans les années 80 une génération d'étudiants tunisiens dans les universités américaines.
Le rôle et la personnalité de M.S. Baouendi sont complexes et une partie de ce rôle et de cette personnalité appartient à la sphère privée et à sa famille. Pour l'autre partie, publique, on peut noter qu'avec M.S. Baouendi, la Tunisie et le monde arabe renouent avec les mathématiques du plus haut niveau international : M.S. Baouendi en était un maître reconnu comme en témoignent les nombreuses distinctions qu'il a reçues (prix Aumale de l'académie des sciences (Paris), prix Bergman de l'AMS ; membre de l'académie des sciences et des
arts aux Etats-Unis...)
En avance sur son temps en Tunisie, il n'y a pas fondé une école. Mais il a été un exemple pour nous tous et un encouragement : le signe que nous pouvions renouer avec le meilleur niveau. Les mathématiciens d'envergure internationale sont peu nombreux au total. Même aujourd'hui où leur nombre a augmenté, cette communauté reste une petite communauté de quelques milliers de personnes. Au temps où M.S. Baouendi était dans sa prime jeunesse, ils n'étaient que quelques centaines et dans son domaine spécifique, seulement quelques uns.
Mohamed Salah était un maître de son art, un des « grands ».
Nous le saluons donc ici et, en connaisseurs, regrettons la disparition d'un magicien du monde qui a honoré son art.
A.B.
Organizing Commitee:
MIMS
Scientific Commitee:
Aziz El Kacimi, Sadok Kallel, Nordine Mir, Linda Rothschild.
Sponsors:
MIMS - Laboratoire LAMHA (Sfax)- Laboratoire LATAO (Tunis) - Laboratoire ACEDP (Monastir) - MSB - TAFA.
Abstracts
Hajer Bahouri
Université Paris XII
Stability result for the Navier-Stokes system
In this joint work with Jean Yves Chemin and Isabelle Gallagher, we prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem: if a sequence , of initial data, bounded in some scaling invariant space, converges weakly to an initial data u0 which generates a global regular solution, does generate a global regular solution? Because of the invariances of the Navier-Stokes equations, a positive answer in general to this question would imply global regularity for any data so we introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.
Abbès Bahri
Rutgers University
Fredholm, Compactness and Existence Issues in Contact Form Geometry
We study, extending the techniques of Paul H.Rabinowitz, the issue of existence of periodic orbits for Reeb vector-fields in dimension 3 and the issue of existence of invariants of deformation that can be attached them. These problems have of course been already considered in the past by a large number of other mathematicians (not exhaustively: Viterbo, Hofer, Bourgeois, Oancea, Hutchings, Taubes) using other techniques.
Oliver Baues
Karlsruhe Institute of Technology
Deformations and rigidity of lattices in solvable Lie groups
Let G be a Lie group and G a lattice in G. Let (G, G) denote the space of all homomorphic embeddings of G as a lattice into G. By a result of Weil, (G,G) is an open subset in the space of all homomorphisms from G to G, and Wang showed subsequently that its components are smooth manifolds. There is also a natural left-action of Aut(G) on (G,G). The lattice G is rigid in G if and only if Aut(G) acts transitively on (G,G). More generally, the orbit space Aut(G)\ (G,G) provides a quantitative measure for the degree of non-rigidity of G in G. In this talk, we discuss the above setup for simply connected, solvable Lie groups G. We are particularly interested in describing principal situations where G is deformation rigid, that is, situations, where the space Aut(G)\ (G,G) is finite our countable.
Salma Azouazi
Faculté des Sciences de Sfax
Ali Baklouti
Faculté des Sciences de Sfax
On the deformation theory of discontinuous actions on homogeneous spaces
We present in this talk different questions related to the geometry of the parameter and the deformation spaces of a discrete subgroup of a lie group G, acting properly discontinuously and fixed point freely on a homogeneous space G/, where H stands for an arbitrary closed subgroup of G. The topological features of deformations, such as rigidity and stability are also discussed, namely the analogue of the Selberg-Weil-Kobayashi rigidity Theorem in the non-Riemannian setting. Whenever the Clifford-Klein form \G/H in question is assumed to be compact, these spaces have specific properties but can fail to be endowed with a smooth manifold structure.
Mehdi Belraouti
Université Bordeaux I
Comportement asymptotique dans les espaces temps a courbure constante
Dans cet exposé nous nous intéressons aux espaces temps dit globalement hyperboliques Cauchy compacts. Ce sont des espaces temps qui admettent une fonction, dite fonction temps, propre surjective qui croit strictement le long des courbes causales inextensibles. Les niveaux de telles fonctions sont des hypersurfaces de type espaces appelés hypersurfaces de Cauchy. La donnée d'une fonction temps définit naturellement une famille à 1-paramètres d'espaces métriques. Notre but est d'étudier le comportement asymptotiques de ces familles d'espaces métriques. Il y a deux cas de figure à considérer : le premier étant le comportement asymptotique dans le passé; le deuxième est celui du comportement asymptotique dans le future. Plus de conditions géométriques sur l'espace-temps (courbure constante) et les fonctions temps à considérer (convexité) seront nécessaires.
Jean-Michel Bony
Ecole Polytechnique, Palaiseau
Decomposition of Nonnegative Functions into Sums of Squares
Given a nonnegative function f of d variables, is it possible to write it as a finite sum of squares f= of functions having a given degree of regularity? The answer depends on the dimension d and on the required degree of regularity. For any d, a result of Phong and Fefferman asserts that one can choose gj C{1,1} (functions whose gradient is Lipschitz continuous). This result is the best possible for d> 3. On the other hand, for d=1 and for any m, one can choose gj m. Precise results, based on a joint work with Ferruccio Colombini and Ludovico Pernazza, are given for d=2 and d=3
Makhlouf Derridj
Université de Rouen
On microlocal regularity for involutive systems of complex vector fields of tube type in Rn+m
We generalize and improve some results we obtained in a joint work with Bernard Helffer in a series of papers concerning micolocal subellipticity, microlocal maximal estimates and microlocal hypoellipticity for complex systems of vector fields, first studied by François Treves.
Peter Ebenfelt
University of California San Diego
CR Geometry and Mappings in Several Complex Variables
Ali Maalaoui
Mathematisches Institutm Universität Basel
Q-Curvature in odd dimensions and related problems
In this talk, we will discuss the problem of prescribing the Q-curvature in odd dimensions. We will first present a classification of solutions in the case of the Euclidean space, we then investigate the case of prescribing singularities. At the end, if time permits we will show how this problem relates to the study of the fractional Moser-Trudinger inequality.
Abdelhamid Meziani
Florida International University
Normalization and solvability of vector fields near trapped orbits
We discuss the solvability and normalization, in the real analytic and smooth categories, of a class of vector fields in a neighborhood of an invariant torus. The vector fields are supposed to satisfy Siegel type conditions.
Nordine Mir
Texas A&M, Qatar
Artin approximation and CR Geometry
In 1968, Artin proved his famous approximation theorem: given any system of real-analytic equations, if there exists a formal solution to such a system at a given point, then there exists a real-analytic solution that is as close as we want in the Krull topology to the formal solution. One question that naturally thereafter rises is whether the conclusion of Artin’s approximation theorem is still preserved if the system of equations is coupled with a specific PDE. In 1978, Milman investigated such a question when th PDE consists of the standard CR operator in 2n= n: he showed that any formal solution of a system of real-analytic equations and of the standard CR equations in n can be approximated (in the Krull Topology) by a sequence of convergent solutions of the system of analytic and CR equations. In this talk, we will discuss recent results generalizing Milman’s theorem when the standard CR operator in n is replaced by the tangential CR operator associated to a real-analytic CR manifold.
Mohameden Ould Ahmedou
Universität Giessen
Conformal metrics of prescribed Q-curvature on 4-manifolds
In this talk we address the question of existence, on a four dimensional Riemannian manifold, of conformal metrics of prescribed Q-curvature. The Q-curvature is a generalization on four manifolds of the two dimensional Gauss curvature. This scalar quantity turns out to be helpful in the understanding of the topology and geometry of four dimensional manifolds. This problem amounts to solving a fourth order nonlinear PDE involving the Paneitz Operator. This PDE enjoys a variational formulation; however the corresponding Euler-Lagrange functional does not satisfy the Palais-Smale condition. In this talk we will report on recent existence results obtained through a Morse theoretical approach to this non-compact variational problem combined with a refined analysis of the singularities of the corresponding gradient flow.
Ludovic Rifford
Université de Nice Sophia-Antipolis
Autour du tenseur de Ma-Trudinger-Wang
La régularité des applications de transport optimales en géométrie riemannienne est liée à la positivité d'un tenseur introduit par Ma, Trudinger et Wang en 2005. Nous expliquerons comment surgit ce tenseur et en quoi sa positivité contraint la géométrie de la variété.
Linda Rothschild
University of California San Diego
Salah Baouendi : A mathematician on three continents
Highlights of Salah Baouendi's contributions to mathematics and to the mathematical community.
Dmitri Zaitsev
University Dublin
Rigidity of CR maps between Shilov boundaries of bounded symmetric domains
Rigidity of CR maps between real hypersurfaces has attracted considerable attention, yet for the higher codimension CR manifolds only little is known. In this joint work with S.Y.Kim we consider maps between Shilov boundaries of bounded symmetric domains of higher rank. The result states that any such CR embedding is the standard linear embedding up to CR automorphisms. Our basic assumption extends precisely the well-known optimal bound for the rank one case. There are no other restrictions on the ranks, in particular, the difficult case when the target rank is larger than the source rank is also allowed.
Ghani Zeghib
Ecole Normale Supérieure de Lyon
The Minkowski problem in the Minkowski space
In the classical Minkowski problem, one starts with a convex surface S and associates to it its Gaussian curvature function . One then composes with the inverse of the Gauss map and gets a function KS on the 2-sphere. The Minkowski problem consists in characterizing the functions on the sphere which have the form KS for some convex surface S? We are going here to consider this problem in a Lorentzian setting by replacing the 3-Euclidean space by the 3-Minkowski space, requiring the surface S to be spacelike and replacing the sphere by the hyperbolic plane. This is a joint work with T. Barbot and F. Béguin.
Program
March 24-27, 2014
Monday 24 |
Cité des Sciences, amphi Khawarizmi |
Talk |
9:30 |
Opening word. H. Baouendi, M. Amara,
|
On the life of M.S. Baouendi |
10:00 |
Linda Rothschild |
Salah Baouendi: a mathematician on three continents |
10:30 |
Advanced Course: Peter Ebenfelt |
CR geometry and mappings in several complex variables |
11:30 |
Jean Michel Bony |
Decomposition of nonnegative functions into sums of squares |
12:30 |
Lunch break |
Cité des Sciences |
14:00 |
Introduction GGTM-MIMS |
|
14:20 |
Makhlouf Derridj |
On microlocal regularity for involutive systems of complex vector fields of tube type in |
15:30 |
Abbès Bahri |
Fredholm, compactness and existence issues in contact form geometry |
|
Pause Café |
|
Tuesday 25 |
Hôtel les Ambassadeurs |
Talk |
9:30 |
Advanced Course: Peter Ebenfelt |
CR geometry and mappings in several complex variables |
10:20 |
Pause Café |
|
10:30 |
Abdelhamid Meziani |
Normalization and solvability of vector fields near trapped orbits |
11:30 |
Hajer Bahouri |
Stability result for the Navier-Stokes system |
|
Lunch break |
Paradiso/Ambassadeurs |
14:30 |
Dmitri Zaitsev |
Rigidity of CR maps between Shilov boundaries of bounded symmetric domains |
15:30 |
Ghani Zeghib |
The Minkowski problem in the Minkowski space |
|
Pause Café |
|
17:00 |
Ali Maalaoui |
Q-curvature in odd dimensions and related problems. |
17:30 |
Mehdi Belraouti |
Comportement asymptotique dans les espaces temps a courbure constante |
Wednesday 26 |
Hôtel les Ambassadeurs |
Talk |
9:30 |
Advanced Course: Peter Ebenfelt |
CR geometry and mappings in several complex variables |
10:20 |
Pause Café |
|
10:30 |
Ludovic Rifford |
Autour du tenseur de Ma-Trudinger-Wang |
11:30 |
Mohameden Ould Ahmedou |
Conformal metrics of prescribed Q-curvature on 4-manifolds |
|
Lunch |
Paradiso/Ambassadeurs |
14:00 |
Visit Bardo Museum (open until 16:30)+Dinner |
|
Thursday 27 |
Hôtel les Ambassadeurs |
Talk |
9:30 |
Nordine Mir |
Artin approximation and CR geometry |
10:20 |
Pause Café |
|
10:30 |
Oliver Baues |
Deformations and rigidity of lattices in solvable Lie groups |
11:30 |
Ali Baklouti |
On the deformation theory of discontinuous actions on homogeneous spaces |
|
Lunch break |
Paradiso/Ambassadeurs |
14:30 |
Advanced Course: Peter Ebenfelt |
CR geometry and mappings in several complex variables |
15:30 |
Salma Azouazi |
A generalized analogue of Hardy's uncertainty principle on compact extensions of |
|
VISIT TO SIDI BOU SAID |
|